Posts

This is part 2 of a series of posts reflecting on some highlights in learning about movement that I experienced in this last year. In part 1, I addressed my experience with Applied Functional Science / Chain Reaction™ Biomechanics and presented an application of this approach using hip internal rotation. In this post, I will discuss how my strength and conditioning beliefs have changed in 2012.

I still believe in heavy sagital plane lifting. Power/explosive lifts, deadlifts, squats, various forms of pressing have important places with strength and conditioning in a number of sports. Gary Gray provides good reasoning to support the idea that athletic development does not gain a great deal from these lifts unless they are a competitive weight lifter. However, standardized tests improved by these lifts have been shown to be related to athletic success in research1,2 and professional experience does show these lifts cross over into training. It is possible these improvements may  be related to changes in coaching over the career of an athlete but it doesn’t change the fact that intense overloads over time result is associated with athletes becoming stronger, more powerful, and faster. The carry over effects might not be driven purely by hypertrophy and increased neuromuscular drive, it could be endocrine related (increasing load is associated with increases in GH, testosterone, etc) and it could even be largely related by the mental discipline it takes to safely and properly lift increasingly difficult loads. The argument that he and others make is that there are other ways to accomplish this carry over and provide more specific tissue and neurological adaptation to sport. That may be the case, but it has not had the sheer volume and history of success as heavy sagital plane loading. There are certainly some sports I could see the value in dumping this type of loading today, but I think we might lose something, or cause a new problem, if we drop it all together.

So what about the multiplanar, multi-joint, functional training, corrective exercise realm? This is where I started my journey into movement through attending a seminar at Perform Better in 2003. At that time and many years looking forward, I just wanted to collect exercises and categorize them for individual purposes. I rode the anti-heavy lifting bandwagon for a good 4 years before I realized there was a value in it and put it back in my own system. I juggled the balance between the use of bigger lifts and the use of mobility/stability/sport specific power/strength development. I also began to realize how stability and mobility training was being scarred by the functional training movement. People see individuals squatting on stability balls and doing bicep curls on BOSUs under the claim of being “functional” when in fact, quite the opposite, they’re producing movements which simply do not exist in typical function unless they have some sort of odd circus specialty as a career.

Squat on ball

In fact, for many the idea of stability training automatically seems to perceived as being on an unstable surface, which could not be further from the truth. Worse yet, when they are not on some sort of unstable surface they are frequently isolated and cued to be worked under artificial constraints of stability. Everyone is given at least 5 cues to tighten one muscle, loosen another, fire this muscle, not that one. These cues have a place when someone is painful or are early in a rehabilitation protocol, but they do not belong in an athlete’s prehab or conditioning program in the long term except if they have another exacerbation of symptoms. They do not allow the athlete the freedom of motion to develop control in multiple planes of motion. Stability is a joint by joint function specific task. Stability is not simply the ability to hollow, brace, or maintain perfect hip hinge technique (go ahead and tell any strong man competitor fully flexed over atlas stone that his spine is unstable while lifting).

Atlas_Stone

Nor is stability hip abduction and external rotation strength and endurance which keeps this hip, knee, and ankle in a perfect sagital position. Stability is also nearly impossible to tease away from mobility. When mobility with load and force are only practiced in one plane of motion (IE: sagital plane heavy squatting, dead lifts, etc.), mobility will not improve in other planes of motion unless loaded in those planes of motion. Which brings me to our next topic, mobility needs training, not just stretching (dynamic or static):

I believe we can incorporate loaded and body weight exercises into general strategies for improving mobility which I think is more beneficial than a stretching regimen alone. We now know that long term static stretching flexibility improvements are primarily related to stretch tolerance, not tissue change. We are beginning to see that long-term resistance training with full ROM have similar flexibility improvements. 3,4 My belief is that incorporating more full body multiplanar movements with appropriate loading will therefore make more lasting changes in mobility in ways which are more functionally applicable than stretching because they reinforce active patterns of movement. Furthermore, performing these mobility exercises in weight bearing may theoretically promote joint stability at these newly acquire ranges of motion.

Finally, addressing the concern of timing of implementing all of these exercises into anyone’s program. Overall, I see some effectively implementing multi-planar/multi-joint mobility and stability into supplement work for their heavy sagital plane work. Some incorporate into into their metabolic days. To some extent, I will acknowledge it is possible that the advent of diverse multi-planar dynamic stretching prior to every session is already adequate to address my concerns. However, I still wonder if these are enough to make long standing changes in freeing up movement patterns, in particular in the transverse planes. Simply peppering a couple of mobility exercises from time to time may not be enough.

I began this year developing a program meant to complement existing training programs rather than replacing anything. It started first as a way to implement many of the old school strong man training and unconventional training techniques popular these days: focusing on grip strength and lifting and moving diverse objects into a dedicated session, as a way to expand motor patterns for force generation and just to mix up training. Some of this was just for entertainment and variety. Ultimately, after my exposure to the AFS approach and some of the group training at Shoreline Sport & Spine, this progressed to include a variety of multiplanar activities to promote mobility and stability. I now call these the “Mix” sessions, with the idea being utilize full body movements, lift and move diverse objects which require multiple forms of grip and body positioning, and integrate multiplanar/3D mobility and stability to complement an existing training plan.

The idea behind having these as separate sessions rather than integrated into existing sessions was that although I wanted some mild/brief fatigue from a metabolic style warm-up and a finisher at the end, I wanted to not have neuromuscular fatigue be so great prior to, or during, the session as to prevent the body from learning new movement it might not be familiar with.

I put together a video of some the exercises used in group sessions over the last year as this thought process evolved. This video is not the best representation of everything involved in a mix session or the balance of single plane vs. multi-plane diversity. I still have a large number of sagital plane based exercises, but it still demonstrates how the movement is changed by using objects other than barbells and how freedom of motion is promoted throughout. Of additional note, these sessions were designed for group sessions, the exercises recorded below were primarily for non-competitive athletes, these are different than a competitive athlete and the sessions can be customized be more “general sport specific”, but they are inherently limited in the ability to address an individual’s functional needs.

And if I’m completely honestly, it is just fun to have an entire dedicated session to experiment with movements that are different than what are traditionally used. Sometimes a little change is all that we need to move forward.

1.) Hansen, Keir T., et al. “Do Force–Time and Power–Time Measures in a Loaded Jump Squat Differentiate between Speed Performance and Playing Level in Elite and Elite Junior Rugby Union Players?.” The Journal of Strength & Conditioning Research 25.9 (2011): 2382-2391.

2.) Gonzalez, Adam M., et al. “Performance Changes in National Collegiate Athletic Association Division I Women Basketball Players During a Competitive Season: Starters Vs. Nonstarters.” The Journal of Strength & Conditioning Research 26.12 (2012): 3197-3203.

3.) O’Sullivan, Kieran, Sean McAuliffe, and Neasa DeBurca. “The effects of eccentric training on lower limb flexibility: a systematic review.” British Journal of Sports Medicine 46.12 (2012): 838-845.

4.) Morton, Sam K., et al. “Resistance training vs. static stretching: effects on flexibility and strength.” The Journal of Strength & Conditioning Research 25.12 (2011): 3391.

Movement “flows” are a popular trend in the personal/fitness/strength and conditioning realm these days. “Flows” are a sequence of movements or exercises put end to end and performed in a continuous fashion.  These movements are performed continuously for the desired amount of time or repetitions.  To some extent, they have existed for 1,000 of years in martial arts in patterns of movements called “forms” which paired together martial arts techniques in both short and extremely long sequences (I have learned forms over 10 minutes in length in various styles over the years, and some forms of Tai Chi can be even longer). These grew and evolved to include many acrobatic techniques as well. The value of any these forms are debatable, but for those who enjoy them, they are worthwhile. Similarly, for those who are looking for something different, the current trend of movement flows are worthwhile. After all, movement in life is varied and diverse, not confined to singular patterns. Not to mention that flows can be quickly fatiguing through a variety of changing movements rather than the need to do a high volume of the same exercise.

Over the last few months, I have been toying with the idea of incorporating movement patterns and exercises that I think are generally beneficial to overall movement into standardized flow. As it stands, I have developed two sequences which I have been putting through trials with a variety of victims (read: clients and friends) with positive response. Therefore, I have decided to throw these out to the public for others to try. These flows are great for a warm-up or a stand alone exercise and can be blended together for a physically, and sometimes cognitively, challenging exercise.

Dynamic Principles Basic Flow #1 emphasizes mobility and stability for the hips and shoulders, trunk control, and multiplanar movement driven by both the upper and lower extremities.

Dynamic Principles Basic Flow #2 emphasizes dynamically lengthening the frontal and lateral anatomy lines, multiplanar spinal mobility, and multi-angle hip extension

As always, thoughts and opinions are welcome!

I first heard about 3D/Tri-planar stretching from the Michael Boyle Functional Strength Coach 3.0 video series around 2009. Similarly, Gary Gray completely encompasses the 3D movement paradigm in his functional training programs.  I am not entirely sure the full history behind 3D stretching,  but I will take tremendous liberty to assume it likely started with Thomas Meyer’s Anatomy Trains. This brilliantly written and illustrated work has provided us one of the most detailed reviews and perspectives of the myofascial connections of the body and their respective lines of pull in static positions and with movement. Taking it back even further, we will see that the work of Herman Kabat with the diagonal patterns of PNF also brought tremendous insight into the spiral-like function of muscular and fascial movement in the human body. In retrospect, many of us could clearly have seen in dissections and even in textbooks evidence of muscle and fascia functioning in three dimensions, but we still needed some smart thinkers to remind us that perhaps we should look at treating the movement restriction in more than one plane of motion from time-to-time.

There are numerous ways to perform 3D stretches throughout the body. Popularized systems including Yoga and Pilates have long since incorporated them and intuitively most of us can figure out a number of ways to stretch muscles in multiple planes on our own. The question is, is it better to address a movement restriction globally (3D stretch), or locally (single plane)? It is vital to note that the value of each of these stretches depends on the individual and their specific movement limitations. To be honest, I still find single plane stretches to be the most effective use of time in most cases, in particular when it comes to addressing specific restrictions. In fact, I generally limit the use of 3D stretches to the upper extremity and the hamstrings because I can often times address both a local restriction and global restrictions very effectively in these areas with a single stretch. For the purpose of this post and for this video I am only going to speak of 3D stretching through the hamstrings.

3D/Tri-planar Stretching – Hamstring Emphasized

The attachment of the biceps femoris to the sacrotuberous ligament and the fascial attachments of the erector spinae provides a fairly common restricted line of pull for most individuals. It is very easy to feel the tension throughout this chain/train and it is easy to self-manage. Plus, as I mentioned earlier, I can emphasize a local restriction by passively holding the hamstrings in a lengthened position in a sagital plane and gradually incorporate lengthening of the rest of the fascial chain as needed. From the perspective of Anatomy Trains, with the hamstrings (specifically the biceps femoris) fascial attachment to the sacrum we can take advantage of the Superficial Back Line, the Spiral Line, and the Back Functional Line to lengthen numerous fascial restrictions. From a PNF philosophy, we are lengthening through D1 and D2 hip extension  and increasing ROM into D1 & D2 hip flexion.

That’s enough writing, here is a video of me demonstrating and discussing some options for 3D/Tri-planar hamstring stretching.

I previously wrote a post on the topic of acute stretching, injury, and performance and recently published a study in the same vein in the Journal of Strength and Conditioning Research. At that time, I made only a brief reference to long-term stretching. A recent article regarding a long-term static stretching intervention resulting in strength increases in the contralateral muscle from Nelson et al. 12 inspired me want to write a little more about long-term stretching.

What do we know about the effects of long-term stretching? At this time, we know we can use it to improve static range of motion (ROM)8,9, muscle strength, endurance, and power 7,8. There is also some evidence that long-term (again not acute!) stretching has a role in decreasing musculotendinous injury2.  The mechanism involved in producing improvements in ROM from long term stretching is unknown at this time. Classically, the belief was that we are primarily “lengthening the muscle”. However, ROM improvements related to long-term static stretching appear to be largely related to increased stretch tolerance and not an actual changes in tissue extensibility 3,5,9, which would indicate some sort a neurological influence. The exact mechanism for the strength, endurance, power, and injury prevention benefits are also unknown, but a couple of thoughts seem to permeate. The first being that hypertrophy of skeletal muscle tissue and/or connective tissue may play a role, but this has only been demonstrated in animal studies 14.  Which brings us to a neural influence. We typically think about the neural influences of stretching on the acute effects of performance, but between previous evidence3,5,9 and now Nelson et al. 12, I am hedging a bet towards long term neural adaptation being a key component in the positive outcomes of long-term stretching.

Briefly, Nelson et al. examined  the cross training effect of a 10-week static stretching in an untrained population (important note) on calf strength which demonstrated a 29% increase (higher than contralateral resistance training studies!) in strength of the contralateral calf, as well as a statistically significant 1% increase in ROM for the contralateral calf12.  This change in ROM may seem minimally relevant, but the fact that there was a detectable change in ROM of the contralateral limb may provide additional support for a neurological influence in this change. This is because if hypertrophy had occurred, increased tendon stiffness would likely be noted 15, which probably would have prevented a detectable change in calf ROM. Further yet, previous examinations on unilateral resistance training and its effect on the contralateral limb demonstrated strength increases in the absence of hypertrophy11 and appear to be related to neurological changes4, and there is little reason to believe the effects of stretching would be different than resistance training.

So what is the practical application of this discussion? Mechanism wise, whether hypertrophy or neural based, it doesn’t matter, both are synergistic benefits of long term training. The fact that there are physiological changes with concurrent performance improvements indicate a value in us maintaining or adding a long-term stretching regimen.

More specifically, most athletes can benefit from increasing static ROM. I state this with some caution as there definite risks with excessive flexibility, in particular at the spine. Greater flexibility of the lumbar spine is associated with disc degeneration6,17, and excess flexion and rotation are associated with disc herniation1,10.

Regarding improvements in muscle strength, power, and endurance, these benefits have only been demonstrated in the untrained population7,8,12, so it is difficult to apply to the higher level athlete because neural changes primarily are a part of early training with the influences of hypertrophy primarily playing a role in later gains. As stated by Nelson et al., there may also be a benefit in managing strength loss in an immobilized limb12.

Ultimately, the most practical application for chronic long-term stretching may lie in prevention of musculotendinous injury , although only one study has provided evidence for this proposal2. It appears that this injury reduction is the result of a training response over time, not an isolated occurrence, not in relation to pre-exercise stretching, but a long-term adaptation. As has been repeated to death at this point, no evidence for pre-exercise stretching reducing injury risk currently exists2,13,16,18, but a long-term relationship does exist, and justification for static stretching over time as a method to reduce injury risk is very plausable. There is some suggestion and guidance to the exclusive emphasis on dynamic stretching with no thought towards a post-exercise or separate static stretching sessions, and this may come at the detriment of some benefits we still do not understand. Needless to say, beyond the time commitment, unlike pre-exercise static stretching, there really is no evidence to demonstrate a negative impact of post-exercise static stretching or independent static stretching sessions.

So now it is your turn. What are your thoughts regarding keeping or adding a long-term stretching intervention? Is it worth the time it takes to keep or add it in your program?

1. Adams MA, Hutton WC. Prolapsed intervertebral disc. A hyperflexion injury 1981 volvo award in basic science. Spine (Phila Pa 1976). 1982;7(3):184-191.

2. Amako M, Oda T, Masuoka K, Yokoi H, Campisi P. Effect of static stretching on prevention of injuries for military recruits. Military Medicine. 2003;168(6):442-446.

3. Ben M, Harvey LA. Regular stretch does not increase muscle extensibility: A randomized controlled trial. Scand J Med Sci Sports. 2010;20(1):136-144. doi: 10.1111/j.1600-0838.2009.00926.x.

4. Fimland MS, Helgerud J, Solstad GM, Iversen VM, Leivseth G, Hoff J. Neural adaptations underlying cross-education after unilateral strength training. Eur J Appl Physiol. 2009;107(6):723-730. doi: 10.1007/s00421-009-1190-7.

5. Folpp H, Deall S, Harvey LA, Gwinn T. Can apparent increases in muscle extensibility with regular stretch be explained by changes in tolerance to stretch? Aust J Physiother. 2006;52(1):45-50.

6. Fujiwara A, Lim TH, An HS, et al. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine (Phila Pa 1976). 2000;25(23):3036-3044.

7. Kokkonen J, Nelson AG, Tarawhiti T, Buckingham P, Winchester JB. Early-phase resistance training strength gains in novice lifters are enhanced by doing static stretching. J Strength Cond Res. 2010;24(2):502-506. doi: 10.1519/JSC.0b013e3181c06ca0.

8. Kokkonen J, Nelson AG, Eldredge C, Winchester JB. Chronic static stretching improves exercise performance. Med Sci Sports Exerc. 2007;39(10):1825-1831. doi: 10.1249/mss.0b013e3181238a2b.

9. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. Scandinavian Journal of Medicine & Science in Sports. 1998;8(2):65-77.

10. Marshall LW, McGill SM. The role of axial torque in disc herniation. Clinical Biomechanics. 2010;25:6-9.

11. Munn J, Herbert RD, Gandevia SC. Contralateral effects of unilateral resistance training: A meta-analysis. J Appl Physiol. 2004;96(5):1861-1866. doi: 10.1152/japplphysiol.00541.2003.

12. Nelson AG, Kokkonen J, Winchester JB, et al. A 10-week stretching program increases strength in the contralateral muscle. J Strength Cond Res. 2012;26(3):832-836. doi: 10.1519/JSC.0b013e3182281b41.

13. Pope RP, Herbert RD, Kirwan JD, Graham. A randomized trial of preexercise stretching for prevention of lower-limb injury. Medicine & Science in Sports & Exercise. 2000;32(2):271-277.

14. Sasai N, Agata N, Inoue-Miyazu M, et al. Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubes. Muscle Nerve. 2010;41(1):100-106. doi: 10.1002/mus.21473.

15. Seynnes OR, Erskine RM, Maganaris CN, et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol. 2009;107(2):523-530. doi: 10.1152/japplphysiol.00213.2009.

16. Shrier I. Stretching before exercise does not reduce the risk of muscle injury: A critical review of clinical basic science literature. Clinical Journal of Sport Medicine. 1999;9(4):221-227.

17. Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 2001;1(1):47-56.

18. Thacker SB, Gilchrst J, Stroup D, Kimsey D. The impact of stretching on sports injury risk: A systematic review of literature. Medicine & Science in Sports & Exercise. 2004;36(3):371-378.