The discussion about the value of a dynamic warm-up in movement preparation is fairly focused on dynamic stretching these days. If you need a brief primer on pre-exercise dynamic stretching, please visit this old write-up of mine here. Now debates occasionally arise regarding what the “optimal” dynamic warm-up or movement preparation approach is. Tons of articles, books, and even training programs encompass very specific “functional” activities as a part of the warm-up. While I personally think that some degree of specificity is needed for each individual sport, there may be times we get a little excessive in this vein. A recent article from  Sander et al. sparked my interest on this topic. In their study, they took a group of elite youth soccer players (making some limitation of the practicality to 13-18 years olds), split them into two, one with a very generic warm-up (although they did include various running drills which are functionally specific to sprinting) and a second which did the generic warm-up plus additional “functional exercises”.  They found that for linear sprints and change of direction sprints, no significant difference was noted between the two groups. In other words, besides just “getting warmed up”, some of the classic “functional dynamic warm-ups” did not add any additional benefit to the performance of a sprint task. This leaves a great deal of room for argument regarding how this would apply to the broad scope of movements of sports beyond sprinting, but it still shows you don’t have to spend 15-20 minutes doing a complex dynamic warm-up to be able to a physically demanding task such as sprinting.

This was interesting to me because I have been playing around with the use of an intervals for movement preparation in recent months as method of making shorter warm-ups, and the feedback I have received so far has been positive.  Intervals have been extremely popular in recent years for “metabolic training” and fat loss programs based on various interpretations (some grossly inaccurate) of the original Tabata protocol and other historical interval/circuit training research. However, another possible use for intervals are as a generic/semi-specific warm-up.

When performing an interval for a warm-up, the intensity is perceived as high, but the rest intervals, exercise selection, and exercise order prevents early overwork and burn out. Time is saved from the exclusion of a general warm-up, and the movement specific components can be incorporate as a part of the interval model (although more will be necessary if full sport participation is planned).

Currently, I use 30 seconds on, 10 seconds off, for 10-20 rounds  (5-10 mins of actual work) depending on the demands for the session. In these 10-20 rounds I select a matching number of alternating light, moderate, and higher intensity full body exercises which generally involve the primary movers and stabilizers for most sports. Typically, I use a number general low risk contemporary exercises which can be easily graded for intensity, such as heavy ropes, kettlebell deadlifts, hand walk ups on unstable surfaces, farmers walks, etc. If limited equipment is available (on field, etc.) most of the intervals are body weight.

Although I can’t state there are unique physiological benefits from an interval model, theoretically it shares the same benefits of increasing heart rate, blood flow, increased neuromuscular recruitment, provide the ROM demands of the activity, and most importantly, being interesting and challenging enough to get the central nervous system fired up and therefore “wake” the athlete up for training. If I’m honest, it’s not really much different than most dynamic warm-ups except earlier increases in intensity and using a timer rather than reps and sets. But that’s what makes it different from a psychological perspective. Just having the warm-up “be different” is valuable to me, because after nearly 10 years of sets and reps of rather low intensity progressive dynamic warm-ups, sometimes you just want something different, and often times, so do your athletes.

Below is a video of a sample interval warm-up for a small group training session. Since the goal of the warm-up was to prepare for some backyard strength training, no sport specific components were a part of the training session. This session was shorter than what I typically use, consisting of 7 rounds for 3 minutes and 30 seconds of actual work. But it was still more than adequate to warm-up everyone to be able to do what they needed to do in the proceeding training session, showing how the interval model can save quite a bit of time in compressed training sessions.

Sample Interval Breakdown

**Note: With groups, it is more difficult to grade intensity of exercises since an individual starts at any station, so every exercise has to be selected as if it can be tolerated as the athlete’s first exercise if they were “cold”.

  • Weighted stair/box stepping – Hip extension patterning, unilateral & quick heart rate elevation
  • Kettlebell deadlift – Hip extension patterning, requires less spine/hip flexion than tradition DL & much lower load, and some core activation.
  • Floor mover reaches – Scapular/RC activation, some core, and mobility.
  • Floor mover mountain climbers – Quick heart rate elevation, and mobility.
  • Heavy rope battling ropes – Heart rate elevation, scapular/RC activation, and some core activation.
  • Sandbag hand walk-ups – Core activation and scapular/RC activation.
  • Isometric grip strength – This was partially a rest station, but was also to prepare for the gripping components of the training session for the day.

P.S. Yes, I love to keep it classy by shooting these videos in my trashed basement gym. The record has been a small group of 10 victims squeezed in here.

A few months ago I talked about the Gluteus Maximus Activation Enigma and the conflicting information obtained on the glute max in the clinic versus what has been demonstrated in literature. It has been difficult for me to address this because I too was guilty of really perpetuating the idea of “gluteal inhibition” and that your “glutes are shut off”, when the evidence for these theories does not exist unless you have a true nerve lesion. It may seem like semantics to the some, but the reality is that our patients and clients take these words very seriously. In fact, I would say a good chunk of them catastrophize the fact that their “glutes aren’t working” and likely worsen the associated symptoms involved in the hip extension dysfunction. I think for athletes in particular to be told that something isn’t working in their body is detrimental to performance for individuals with certain psyches, a point which Vern Gambetta really drives home with his opinion on corrective exercise. At the same time, even if the glutes truly are not “Turned off” or “Firing in the wrong order”, clinically, they are clearly not working very efficiently either, especially if they are significantly asymmetrical. Therefore to find middle ground, I like to look for solutions which help the client/patient remain independent while still participating in their sport even if some form of dysfunction exists by using self evaluation and treatment. I previously mentioned my suspicion that muscle fatigue, rather than muscle inhibition or activation order, may play a part in why our glute emphasized treatments result in reduction of symptoms. A recent article from Hong-You Ge, et al.1 demonstrated that latent trigger points have measurable effects on muscle fatigue made me want to revisit fatigue in the evaluation and treatment of general hip extension dysfunction.  However, I’m going to broaden this idea even further (I’m once again breaking my own rules regarding excessive extrapolation of a research study by doing so) by first looking at addressing the antagonists to hip extension, the hip flexors, prior to attempting to address trigger points/restriction in the gluteals.

I want to preface this write-up to make it clear that I have no evidence for the process that I am about to describe and I am certain there are at least 10 other ways to independently evaluate hip extension. I think both Stuart McGill and Bret Contreras have touched on the use of  different types of bridges in determining hip extension dysfunction in the past, but I couldn’t find the articles offhand, so here is my take on it.

I use a 15-20 rep range of single leg bridges for the patient/client to subjectively identify whether they feel a perceived difference between sides relative to fatigue, ease, and whether it feels disproportionately loaded on the hamstrings, possibly even painful if that is their primary complaint. Then, based on which side is perceived as more challenging, we slightly butcher the classic Janda lower cross syndrome2 and just associate hip flexor involvement with gluteal function rather than look at his original cross of abs to glutes.We’ll generalize it even more and call the hip flexors over active antagonists with possible active or latent trigger points in them decreasing performance of the agonist hip extensors just to integrate the Hong-You Ge et al. 1 discussion a little more.

So for the patient to independently treat this, we start with them attempting to inhibit the hip flexors through a 30 second static stretch for and then retest the bridges. They don’t have to go all the way to 20 reps but they should just be able to go 2-3 more reps more and perceive the exercise as easier. If it does improve, have them do a full minute of static stretching of that hip flexor followed by 3-4 sets of 15-20 reps of single leg bridges to reinforce the more efficient hip extension pattern.  If it doesn’t improve, or they feel only a little better, try a self-TFL release next. Use 1-2 minutes of self release on a tennis ball followed by the same 3-4 sets of single leg bridges discussed earlier.  If they still don’t feel an improvement, go for the glutes directly with a self release. If it works, follow the same pattern of reinforcement from earlier. If there is no change, there is a slim possibility they simply need to train that side more aggressively in hip extension. If this is the case, then we want to have them work on quality reps of single leg bridging on a daily basis for the same pattern of reinforcement as described above. If within one week of working this pattern they still find a single set is fatiguing, the problem does not lie specifically in the hip musculature and it is going to require a bigger picture perspective and likely more involved manual therapy (starting with a pelvic/lumbar eval).

A couple of notes: First off, verify that the fatigue is not just related to the position of their foot and whether they are driving from the heel versus the toes because this can significantly impact loading of the hamstrings between sides.  Second, I recognize not every one of our clients and patients can even do a single leg bridge, let alone 20 of them, but this test and these self-treatment options is not for those individuals anyway. Third, by the 3rd set of bridges, if they’re not used to doing these bridges, they’re going to be fatigued anyway, just do a couple reps for them to subjectively evaluate any chance in the performance of hip extension.

Finally, I admit I am probably still going to use the terms gluteal inhibition from time to time, but I swear I’ll do my best to not give patients or clients the anecdote that their glutes are “shut off” again.

***Update 6/24/12: A great example of when self treatment for hip extension dysfunction fails and more involved manual therapy is needed  from Bill Hartman is found here on his blog.

1. Ge H, Arendt-Nielsen L, Madeleine P. Accelerated muscle fatigability of latent myofascial trigger points in humans. Pain Medicine. 2012:no-no. doi: 10.1111/j.1526-4637.2012.01416.x.

2. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. International Perspectives in Physical. 1993:83-97.

Ever had an external rib torsion which just would not calm down? I had one of these for about 6 months and a fellow student had theirs for several months as well. Addressing the t-spine and the rib itself both through manual and exercise helped a little, but didn’t seem to resolve it completely. Instead, we were both able to treat it successfully with this amazing tool:

Towel

Yes, a towel. We folded a medium sized towel to approximately 1/2 to a 3/4 inch in thickness. This towel was then placed under the painful rib, and slept on. It was positioned in way that whether you slept on your back or on your side it would maintain a constant level of compression on that rib. At first, the intent was just to reduce discomfort of the rib pain at night, but unintentionally, it became the complete treatment and resolved the issue. It took about 4 nights for me and about 10 days for other student. Problem solved. Easy and safe intervention to use concurrently with manual and therex, or possibly try it by itself?

The Rotator (Demonstrating Internal Rotation)The Rotator (Demonstrating External Rotation)

Chris Melton from Joint Mechanix sent me a free trial of the Rotater back in March. When I first received it, there were a few minutes of blank staring at it trying to figure out which way to hold the Rotater to get it to do what I wanted at the moment. When I finally watched the DVD that was enclosed, I had to smirk when Eric Beard also became confused on which way to hold it in the outtakes. Needless to say, like with anything I review, I took my time to play with it for a while before I make too many comments on it. In addition, because I have a bit of excess ROM in both internal and external rotation, I really did not use the rotator much myself. Instead, I had a few individuals with restrictions try it out and merged their thoughts with what I observed while they were using it. So here is the review:

As is usually the case with anything I touch, I tried to turn the Rotater into something other than it was designed to do. I wanted a lot of stretching and strengthening variations, but that is not the point of the Rotater. The Rotater is what it is. Which is not to say that is bad in any way, it is the best at what it is designed for, which is for self controlled stretching into focused internal and external rotation. This is a good thing, because as has been mentioned before, the greatest part of the Rotater really is the ability of the patient to control the stretch themselves. I have never been a fan of assisted stretching, but IR and ER stretching is difficult to do independently, typically requiring assistance. However, this can be risky, as I have seen partner assisted shoulder stretching sessions resulting in strains and even tears. The Rotater design solves that problem by putting the control back into the hands of the individual themselves, making it great for post-op shoulder surgery, pitchers/throwers, and any individual lacking IR and/or ER. The design also allows IR/ER to be stretched in nearly all ranges of shoulder flexion and abduction which can help with designing functional ROM progressions within post-op restrictions. The Velcro band can also be used as a gentle resistance point for self-administering PNF stretches or even oscillating stretches at the end range if the need arises.

I want to clearly state, that when it comes to addressing limitations of ROM, I still believe the first goal should still be address joint mobility of the effected joint and those around it to see if the ROM limitation clears up without more focused stretching. If it does not, there is still an important place for additional stretching, and in the case of lacking IR/ER in the shoulder, the Rotater really shines in this area!

So what were my concerns and dislikes? At first, I was concerned about the durability of the Rotater, but the reality is it survived a couple of incidences of being stepped on, thrown and dropped, and aggressively being flexed. I thought the amount of flex that occurred with stretching and the strong arm would eventually give and snap it in half, but it has held well and Chris stated the flex was actually there by design for durability. Regardless, they warrant the Rotator all the way around, so if anything were to break they would replace it.

One specific dislike I had was mostly to do with my own personal preferences. I just do not do very much focused IR/ER strengthening with most of the people I work with. So for me I was not entirely sold on the strong arm attachment. It worked as it was intended, but it was time consuming to switch between IR/ER. If an individual needed a very specific range to be worked with tremendous control and only in one direction, it could work well. However, I tend to do more stabilization, eccentric control,  and multi-joint/multi-planar exercises for the shoulder. Although you could use it for controlled stabilization and eccentric control, I prefer getting the entire shoulder involved using another method.

Overall, the beauty of the Rotater is in its simplicity, it does its intended job very well. I commend the team over at Joint Mechanix for putting the Rotator together without an orthopedic rehab background!

The Rotater

The FDA dictates specific uses and indications of a drug based on pharmaceutical trials. These specific uses and indications are “on the label”. Physicians frequently utilize pharmaceuticals “off label” from their branded purpose based on clinical reasoning. This is a legal and widely accepted practice and necessary to treat conditions which at this time may not have the research evidence available to support the practice but has demonstrated good clinical outcomes. The advent of Clinical Prediction Rules (CPR) and subclassifying of conditions towards specific treatment protocols has been growing in the physical therapy realm5,8,12,13. This is particularly true with manual therapy and CPR for joint mobilizations/manipulations for the cervical, thoracic, and lumbar spine. In general, these guidelines tend to be region specific, IE: a lumbar manipulation for a lumbar condition5,8and cervical spine mobilization/manipulation for neck pain12. Although not as well known, predictive factors for the influence of cervicothoracic manipulation on shoulder pain10 and lumbopelvic manipulation in patellofemoral pain syndrome9 have also been proposed. You could say that the advent of CPRs/classifications is the rehabilitation world’s attempt at providing an “on label” guideline for treatment. However, little other attempt has been made to provide subclassifications for conditions and treatments regarding manual therapy interventions on extremity conditions. Clinically, worldwide, many movement professionals treat extremity conditions one to two joints proximally or distally, in particular through addressing mobility at the spine. This practice is based in the idea of regional interdependence, or “the concept that seemingly unrelated impairments in a remote anatomical region may contribute to, or be associated with, the patient’s primary complaint.”18 In an essence, this practice is “off label”, but unlike the pharmaceutical practice, it is not widely accepted and frequently questioned. This is particularly true from a medical billing and, depending on the location, referral/medical prescription level. Even from within our profession itself, it is not terribly uncommon for the concept of regional interdependence to questioned and perceived as a “wild goose chase around the body” 18.  As I have mentioned in previous posts, Thomas Myer’s Anatomy Trains based system KMI, Gray Cook’s SFMA and Gary Gray’s Chain Reaction Biomechanics™/GIFT Fellowship are perhaps the first to develop standardized evaluation and treatment methods of looking at the body globally rather than locally. Although the terminology varies between each, all of these programs have essentially provided a road map towards understanding regional interdependence. I have minimal exposure to all of these programs, so I cannot give justice to any of them trying to give additional details from their models. However, I wanted to share my thoughts on regional interdependence based on the experience I have gained through my mentors, research, and my limited full-time clinical experience thus far.

A JOSPT guest editorial by Wainner, Whitmann, Cleland, and Flynn titled Regional Interdependence: A Musculoskeletal Examination Model Whose Time Has Come (Freely available directly from JOSPT) written in 2007 probably first popularized the term “Regional Interdependence”, because very little literature prior to this date utilized this term. This editorial presented a great case, both from a clinical and a research perspective, that the practice of examining musculoskeletal conditions beyond the single joint/primarily complaint area is woeful inadequate to address the needs of both common and complicated conditions 18. Research has increasingly been supportive of regional interdependence. Improved pain scores and functional outcomes have been demonstrated painful shoulder conditions as a result of the use of cervicothoracic and rib manipulation 2,4,10,15. Similarly, lumbar and pelvic manipulation has demonstrated improvement in patellofemoral pain syndrome9,16,19. Beyond manual therapy, evidence for the use of foot orthotics for various lower extremity injury as a preventative measure7 and as a method of treating PFPS 17.  However, the role of distal contributions, or more specifically excessive pronation, was recently questioned in a systematic review by Chuter and Janse de Jonge6. In their review, they proposed that a greater influence on lower extremity injury arises proximally from the “core”6. Regardless, what is evident in available research is that proximal and distance regions to the site of injury have some role either as a result of the injury, or as a precursor to the injury1,6,11,14.

Clinically, there are presentations and treatments related to regional interdependence which are a long way (if ever) from being able to be demonstrated or clearly explained in a research design. We are still in the early stages of understanding manual therapy, let alone regional interdependence. Bialosky, et al. (Open access link) provides a great review and proposed a model which encompasses both joint and soft tissue mobilization/manipulation 3.  Although the emphasis of this model and much of the research on manual therapy is based on a neurophysiological, peripheral, spinal, or supraspinal mediated mechanism 3, it is difficult to extrapolate whether these the neurological models also play a key role in regional interdependence. Perhaps now, with the treated “dysfunction” one or more joints away from the injury location, the importance of “movement”, as biomechanically dictated, plays a more important role? Or perhaps still, somewhere in “homunculus land”, a map of regional interdependence is now changed to alter both pain and movement patterns. It is too early to tell, but hopefully this question will soon answered! Whatever the mechanism may be, clinically, there still appears to be a degree of specificity and clinical reasoning necessary in order to provide an optimal outcome. To illustrate this, I want to present a brief clinical case.

This case involves a 23 year old male competitive soccer player who originally presented with posterior left rib pain around T5 region which somehow evolved into some form of left posterior shoulder pain and restricted ROM. Somatic dysfunctions for the thoracic spine, ribs, scapula, glenohumeral capsule, and surrounding tissue(including an incredibly tight latissimus dorsi) were identified. These factors were assumed to be key to recovering the 10-15 degree loss of shoulder flexion with a painful posterior “pinch” at the endrange. A gambit of joint mobilizations and attempts to lengthen the latissimus dorsi, as well as, various techniques for “releasing” other soft tissue restriction was started.  Despite 4 sessions of valiant attempts to regain this loss of shoulder flexion through manual therapy and stretching even up to two joints away, little progress was made. Out of shear randomness, I observed an obscurity in the way the inferior aspect of his rib cage moved when I passively flexed his left shoulder. Perhaps it was an illusion generated by my mind from years of staring at Thomas Meyer’s Anatomy Trains, but something made me believe it was worth looking at his rectus abdominis. Needless to say, simply palpating the rectus abdominis was enough to generate a startle response similar to a typical trigger point presentation. Tension and “restriction” was felt through the lateral band of the rectus abdominis. Much to the patient’s dismay, I spent two minutes “releasing” this restriction and without any other treatment. Immediately afterward, I was able to move him into those last 10-15 degrees of shoulder flexion pain free. One additional treatment was scheduled and the patient was set for a one week recheck, at which point they were still symptom free and discharged.

Looking back now, I could pretend I know what happened and propose a theory to explain it from a biomechanical model utilizing Anatomy trains. I could state that since the rectus abdominis inserts on ribs 5-7, it must then pull on the fascial origins of the pectoralis minor directly or through pulling the rib cage down. Consequently, the pec minor then pulls on the coracoid process of the scapula, which could  result in anterior tilting of the scapula, and therefore give a possible mechanical cause for the “pinching sensation” and  restricting shoulder flexion. The honest truth is, I don’t know why it worked, because it was such a random find. Yet oddly enough, it seemed as though I had to be specific enough in my treatment approach in order to get a positive outcome for this patient. Simply addressing classic restrictions around the shoulder was not enough in this case, I had to go even farther, and I had to use soft tissue! Did I truly decrease the tension in the rectus abdominis and therefore produce the mechanical cascade which lead to this resolution? Could it have been placebo, was the shear randomness of the treatment approach a psychological effect that somehow modulated the pain or ROM changes? I am completely open to any suggestions!

Clearly not every case needs to be this involved or complicated, and sometimes the area of injury is the best place to focus your treatment and leave it at that. At the same time, both clinical and research evidence seems to be paving way the importance of remembering that the leg bone is connected to the knee bone, and the knee bone connected to the thigh bone…

1. Berglund KM, Persson BH, Denison E. Prevalence of pain and dysfunction in the cervical and thoracic spine in persons with and without lateral elbow pain. Man Ther. 2008;13(4):295-299. doi: 10.1016/j.math.2007.01.015.

2. Bergman GJ, Winters JC, van der Heijden GJ, Postema K, Meyboom-de Jong B. Groningen manipulation study. the effect of manipulation of the structures of the shoulder girdle as additional treatment for symptom relief and for prevention of chronicity or recurrence of shoulder symptoms. design of a randomized controlled trial within a comprehensive prognostic cohort study. J Manipulative Physiol Ther. 2002;25(9):543-549. doi: 10.1067/mmt.2002.128373.

3. Bialosky JE, Bishop MD, Price DD, Robinson ME, George SZ. The mechanisms of manual therapy in the treatment of musculoskeletal pain: A comprehensive model. Man Ther. 2009;14(5):531-538. doi: 10.1016/j.math.2008.09.001.

4. Boyles RE, Ritland BM, Miracle BM, et al. The short-term effects of thoracic spine thrust manipulation on patients with shoulder impingement syndrome. Man Ther. 2009;14(4):375-380. doi: 10.1016/j.math.2008.05.005.

5. Childs JD, Fritz JM, Flynn TW, et al. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: A validation study. Ann Intern Med. 2004;141(12):920-928.

6. Chuter VH, Janse de Jonge XA. Proximal and distal contributions to lower extremity injury: A review of the literature. Gait Posture. 2012. doi: 10.1016/j.gaitpost.2012.02.001.

7. Collins N, Bisset L, McPoil T, Vicenzino B. Foot orthoses in lower limb overuse conditions: A systematic review and meta-analysis. Foot Ankle Int. 2007;28(3):396-412. doi: 10.3113/FAI.2007.0396.

8. Flynn T, Fritz J, Whitman J, et al. A clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine (Phila Pa 1976). 2002;27(24):2835-2843. doi: 10.1097/01.BRS.0000035681.33747.8D.

9. Iverson CA, Sutlive TG, Crowell MS, et al. Lumbopelvic manipulation for the treatment of patients with patellofemoral pain syndrome: Development of a clinical prediction rule. J Orthop Sports Phys Ther. 2008;38(6):297-309; discussion 309-12. doi: 10.2519/jospt.2008.2669.

10. Mintken PE, Cleland JA, Carpenter KJ, Bieniek ML, Keirns M, Whitman JM. Some factors predict successful short-term outcomes in individuals with shoulder pain receiving cervicothoracic manipulation: A single-arm trial. Phys Ther. 2010;90(1):26-42. doi: 10.2522/ptj.20090095.

11. Reiman MP, Weisbach PC, Glynn PE. The hips influence on low back pain: A distal link to a proximal problem. J Sport Rehabil. 2009;18(1):24-32.

12. Schellingerhout JM, Verhagen AP, Heymans MW, et al. Which subgroups of patients with non-specific neck pain are more likely to benefit from spinal manipulation therapy, physiotherapy, or usual care? Pain. 2008;139(3):670-680. doi: 10.1016/j.pain.2008.07.015.

13. Slater SL, Ford JJ, Richards MC, Taylor NF, Surkitt LD, Hahne AJ. The effectiveness of sub-group specific manual therapy for low back pain: A systematic review. Man Ther. 2012;17(3):201-212. doi: 10.1016/j.math.2012.01.006.

14. Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12-19. doi: 10.2519/jospt.2009.2885.

15. Strunce JB, Walker MJ, Boyles RE, Young BA. The immediate effects of thoracic spine and rib manipulation on subjects with primary complaints of shoulder pain. J Man Manip Ther. 2009;17(4):230-236.

16. Vaughn DW. Isolated knee pain: A case report highlighting regional interdependence. J Orthop Sports Phys Ther. 2008;38(10):616-623. doi: 10.2519/jospt.2008.2759.

17. Vicenzino B, Collins N, Cleland J, McPoil T. A clinical prediction rule for identifying patients with patellofemoral pain who are likely to benefit from foot orthoses: A preliminary determination. Br J Sports Med. 2010;44(12):862-866. doi: 10.1136/bjsm.2008.052613.

18. Wainner RS, Whitman JM, Cleland JA, Flynn TW. Regional interdependence: A musculoskeletal examination model whose time has come. J Orthop Sports Phys Ther. 2007;37(11):658-660. doi: 10.2519/jospt.2007.0110.

19. Welsh C, Hanney WJ, Podschun L, Kolber MJ. Rehabilitation of a female dancer with patellofemoral pain syndrome: Applying concepts of regional interdependence in practice. N Am J Sports Phys Ther. 2010;5(2):85-97.

Eric Cressey put out a great post a few months ago regarding the possible risk of doing excessive amounts of heavy pull-ups/chin-ups. Eric also made a good point that perhaps for some individuals, we should be doing a cost-benefit analysis regarding whether they should even be doing the exercise. Since then, I have seen a number of individuals post their concerns regarding excessive chinning/pull-ups. Along with many of these posts came the suggestion of complimenting, supplementing, or possibly replacing pull-ups/chins with rowing and other pulling techniques. Although this isn’t exactly a new idea, many coaches are attempting to balance between the two motions, it just hasn’t had as wide of recognition as it should have because so many people hold the pull-up/chin as a sacred cow which cannot be degraded or changed in any shape or form. Needless to say, I still love pull-ups/chins, but I have found myself drifting more towards doing variations of heavy rope climbing as my primary grip, arm, and back strengthening exercises. For this post, I put together video of my favorite rope climbing progressions as a supplement to, or replacement for pull-ups/chin-ups.

This is a basic rope climbing progression toward climbing single and double ropes without leg assistance. Rope climbing is an excellent grip, arm, and back challenge that demands strong functional muscle synergies in order to complete each pull. This progression is designed for rope lengths between 7-10 feet, such as those attached to a power rack/squat rack or a low ceiling. At this distance, climbing up and back down equals 1 rep. As each unweighted progression becomes easy (3 sets of 10 reps easy), you progress to the next technique, or skip around as you see fit. Treat the “no leg” climbs like a heavy lift, aiming for sets of 5. If you can get to the point of doing 5 sets of 5 reps with the no leg technique, you are solid and should either strap on some weight or find a place to use a decent height rope (20+ feet).

**Caution: Although I really enjoy the suspension strap assisted climbs, there is a risk of getting yourself tangled up and coming down without your legs to protect you. If you can’t safely bail out with just your arms at this height, don’t use this technique.

***FULL DISCLOSURE: I am planning on becoming an affiliate for the EDGE. I hope this review stands for itself that monetary reasons have no influence on my perspective or this review, but I wanted to be upfront about my future intentions.

I have been following Dr. E’s Blog off and on for the last year, primarily for the excellent education resource it provides for those with strong interests in manual therapy. I had looked at the EDGE tool a number of times, but never really thought seriously about trying it out because I’ve always had a bias towards the exclusive use of my hands in manual therapy. The whole Graston/ASTYM and the  Instrument Assisted Soft Tissue Mobilization (IASTM) seemed like a fad to me, so I thought I’d wait it out.  However, in January, I mentioned Dr. E in a Twitter reference and was surprised to hear back from the man himself.  We spoke off and on since then, and he mentioned he wanted to get my thoughts on the EDGE as a self-treatment tool for the martial artist. It took me a while, because I was still skeptical, but I finally ordered my own EDGE at the end of February to try it out.  I quickly found out, I really couldn’t do it justice by only speaking from the perspective of a martial artist, but also someone who is completely new to the concept of IASTM and how different it is from traditional soft tissue mobilization (STM).

To start,  I wanted to talk about how oblivious I was to the difference between IASTM and STM. I was fortunate enough to have some great physical therapy mentors introduce me to STM in 2003, prior to even starting school for athletic training or physical therapy. Over time, I began to favor a treatment approach that was biased towards combinations of ischemic pressure based releases and blunt (finger) deep cross friction. This treatment style did not transition well into IASTM , which I believe fits better within  the realm of differentiating and treating based on “dysfunctions” in myofascial tissue layers. I have been historically biased against popular myofascial release techniques because I do not see as rapid of a change as I do when I deal directly with hypertonicity in contractile tissue (trigger points, etc.). In my attempts to transition the EDGE over to this style of treatment, I was frustrated in overlapping these techniques because of the abrasions and skin pinching that resulted from attempting to use the tool in this manner. Over the first few weeks, I was able to get a few individuals willing to subject themselves as gracious guinea pigs for me test the EDGE on, including myself. Our first impressions were that we were uncomfortable with the “abrasive feeling” in comparison to the way I had been treating before, in particular the residual burning skin (not bruising) discomfort for the day following. I also became concerned with some of my deeper treatments possibly breaking the skin because I made that mistake on myself in my first treatment session. I nearly gave up on IASTM two weeks into it because I simply was ignorant to the purpose of it. I decided to step away from the drawing board and started reviewing the EDGE basics videos and a number of ASTYM videos. With paused reflection, I realized I had to come to IASTM with an open mind towards learning a new style of treatment rather than forcing my own idea of how to use it.

The next time I picked up the EDGE, I started working on an old achilles issue of mine and really spent time working superficially before progressing to deeper layers, and this time I actually made a change in the symptoms and the tissue, very quickly. The strokes were now intent on stripping and scraping in a layer approach rather ignoring the superficial layers and going straight for the deep tissue. An e-mail communication with Dr. E. at that point confirmed to me that my early attempts were really rather futile and that the emphasis of IASTM is stripping and scraping technique in order to facilitate the inflammatory process in healing.  Now, six weeks later, not only am I am able to use the stripping and scraping techniques in a manner which is resulting in symptom reduction but I have also slowly been able to adapt my ischemic pressure releases into the EDGE and reduce the dependency of my hands for all my STM treatments.

From my limited experience so far, I can say that the EDGE certainly is not for every condition and does not work well for everyone (I have one volunteer I definitely cannot use it on), but it has found an important place in my developing manual therapy skill set. Nevertheless, the EDGE has dramatically changed the way I think about treating soft tissue dysfunction and I am thankful that I have had the opportunity to start developing IASTM skillset prior to my full time practice as a physical therapist in manual therapy.

One thing that I wanted to comment on was the type of lubricant/medium used as an interface for IASTM.  After a week of trying out Albolene, Dr. E’s favorite medium for IASTM, I switched to Cramer Skin Lube. I was introduced to Skin Lube during one of my clinical rotations in athletic training where we did an extensive amount of STM using a medium (new to me, since again, I didn’t use “massage like” techniques at this point) on track and field athletes. Skin Lube has a much higher melting point, was cheaper than Cocoa Butter which is commonly used in “massage like” techniques. It is odorless similar to Albolene and seems to last longer than Cocoa Butter and Albolene. For me personally, it felt as though I need a significant amount of Albolene before I felt like it was providing a protective layer against excessive early skin abrasion and I felt at times I needed to re-apply it. With Skin Lube, it took only a single application for roughly 1/4th of the amount of medium. Price wise, both products are nearly equal costs on Amazon.com, Skin Lube just barely came in cheaper, 454 grams for $13.41 vs  $13.37 for 340 grams of Albolene. I’m still way new to this whole IASTM thing, but I have to say that my initial experience is that I like the protective feeling of the skin it gives me, but the downside is that it takes quite a bit more work to remove the remaining product in comparison to Albolene. Although perhaps that could be a benefit!

The EDGE for Martial Artists as a self-treatment/preventative tool

Chronic injuries in martial artists are similar to many other sports, although I will highlight a couple of areas I have found the EDGE to be particularly useful.  Hundreds of thousands of hours and repetitions of striking, gripping, pulling, pushing, and chin na/joint locking lends to numerous opportunities to develop overuse injuries in the forearms and hands. The contours of the EDGE are perfectly designed to reach these areas and could possibly play a valuable preventative and treatment intervention for the martial artist’s hands and forearms. Similarly, as martial artists, we are highly susceptible to patellofemoral pain syndromes(PFPS), achilles tendinosis, chronic hamstring, and IT band issues. These areas are also easily accessible with the diverse contours of the EDGE for self-preventative maintenance. Specifically, I found it very effective in addressing problems around tendinous insertions.  I have been able to completely calm down some irritation in my achilles tendon insertion with a single 5 minute session IASTM session allowing me to train pain free for that day. I also had a recent flare-up of PFPS which I have been able to manage symptomatic with a quick session with the EDGE.

When I spoke to Dr. E originally, I mentioned I typically just recommend foam rollers and tennis balls for self-treatment, I was not sure how valuable this tool is going to be to the martial artist. Now 6 weeks into it, I believe I have found a definitive place for the EDGE in self-treatment of areas I didn’t think about treating because I couldn’t really address them with a tennis ball or foam roller.

I would make only one cautionary statement. Our natural instinct as martial artists (and most athletes) is that more is better (“More Chi Train Harder!”), which may make us use the tool more aggressively than it should be utilized, especially if we are used to deep tissue work such as releasing trigger points. I should have known this myself, but my first self-treatment session with the EDGE I actually kept working through the abrasive sensation to the point broke open some skin while I stopped looking at the treatment site. Clearly it’s the users fault, but it was the first time I had to think a intently about being less aggressive and layering my treatment as to avoid making the same mistake. I think with a little instruction and practice, this would be valuable addition to the martial artist’s preventative maintenance program.

“BONUS”: Here is a video clip of a movement based technique I have been using for symptom management of some PFPS that started flaring up for me a few weeks ago. As an update to what I said on the video, not sure if it is coincidence, chance, spontaneous healing, a recent increase in training intensity, or the daily EDGE treatment technique I show here, but my PFPS is pretty much 90% resolved in the last week after only using this technique. Which is surprising to me because I usually have to think more critically about how I was going to treat it “properly” in order for it to get better. Anyway, check it out:

I was  recently motivated by Rogue Fitness and their new grip strength toys to look into incorporating some new grip strengthening strategies into my own arsenal. Thanks to our “opposable thumb”, we have a variety ways in which we can hold on to things. So it makes sense that if we want to have a “strong grip”, we’re going to want to challenge the hand in more than one way, because a bar, rope, rubber band, and a weight plate can only go so far. John Napier classically categorized grip types simply into “power grips” and “precision grips”. Most textbooks these days have tried to sub-categorize these two groups into roughly 5 different types of grips. Our “power grips” consist of the cylindrical grip, spherical grip, hook grip, and lateral prehension (thumb adduction). While our “precision grips” are all the variations of tip-to-tip pinching and thumb positioning for grabbing small objects.

Unfortunately, my college student budget does not have room for the high quality workmanship of Rogue’s tools at this time. So I decided to channel my inner Ross Enamait and Zach Even-Esh to build my own. Clearly, I’d recommend that you buy the real deal from Rogue [or Elite FTS]***, but I’ve been made do with the following:

***Update: I was informed that Elite FTS also has a great grip kit as well.

I was originally going to do a little write-up on Vladmir Janda’s prone hip extension (PHE) test, but I found that Dr. Greg Lehman has already done a great job with the topic on his blog. As Dr. Lehman mentioned, we really don’t know what to take from this test from a research perspective. Clinically, many have seen that this test does demonstrate test-retest changes with a successful outcome in a treatment. In fact, I have observed a clinical example in which a patient with hip pain had been participating in numerous closed and open chain exercise interventions that involved hip extension and hip abduction to address their hip pain with no improvement. Yet, ultimately a single prone exercise which emphasized conscious effort to perform isometric gluteal contraction completely resolved her year long struggle with hip pain. Despite this clinical evidence, little research regarding injury and the gluteus maximus has been performed. I thought I’d do a quick blurb on some of the few studies which have shown some correlation between gluteus maximus activation and any injury.

Bullock-Saxton, Janda, and Bullock demonstrated a correlation between ankle sprain injury and an increased delay in gluteal activation2. Similarly, Bruno and Bagust demonstrated an increased delay in gluteal activation in low back pain (LBP)1. One concern with both of these studies were that they utilized the PHE test, in which Dr. Lehman already pointed out previous research showing inconsistencies in activation patterns including the relevance of the gluteus maximus delay. Further yet, since the PHE is performed in “prone”, we have remember, as Gary Gray likes to point out, everything changes once the foot hits the ground. Vogt and his team examined muscle activation patterns in both an LBP and asymptmatic population during walking. In their study, they demonstrated that both the gluteus maximus and the erector spinae were active for a prolonged period of time in an LBP population and that, oddly enough, the glut max fired earlier (although so did the erector spinae and hamstrings) in the gait cycle than the asymptomatic population5. Likewise, during standing extension from a full flexed position, Leinonen et al. demonstrated that in a LBP population, the glut max  fired earlier than the erector spinae4. So wait, aren’t we trying to get the glutes to fire earlier as a result of our treatment, or possibly even longer, in the thought of protecting the spine? However, research seems to indicate the body is already trying to do it for us.

So here in lies our enigma regarding gluteus maximus activation and our beliefs regarding its role in musculoskeletal dysfunction. Clinically we’re seeing results with what we perceive to be our gluteal emphasized exercise prescriptions, but it might not be for the reasons we think. As Dr. Lehman mentioned, we may be looking at the wrong variable of gluteal function, perhaps it is peak amplitude or glute max endurance3? Or perhaps our treatments are effecting something else entirely, and simply performing a neuromuscular extensor pattern in the “region of dysfunction” is enough to get a therapeutic benefit (a good future blog topic!).  Regardless, we need to be open to alternative explanations for the gluteus maximus enigma, in particular if those explanations come with improved outcomes.

1. Bruno PA, Bagust J. An investigation into motor pattern differences used during prone hip extension between subjects with and without low back pain. Clinical Chiropractic. 2007;10(2):68-80. doi: 10.1016/j.clch.2006.10.002.

2. Bullock-Saxton JE, Janda V, Bullock MI. The influence of ankle sprain injury on muscle activation during hip extension. Int J Sports Med. 1994;15(6):330-334. doi: 10.1055/s-2007-1021069.

3. Kankaanpaa M, Taimela S, Laaksonen D, Hanninen O, Airaksinen O. Back and hip extensor fatigability in chronic low back pain patients and controls. Arch Phys Med Rehabil. 1998;79(4):412-417.

4. Leinonen V, Kankaanpää M, Airaksinen O, Hänninen O. Back and hip extensor activities during trunk flexion/extension: Effects of low back pain and rehabilitation. Arch Phys Med Rehabil. 2000;81(1):32-37. doi: 10.1016/S0003-9993(00)90218-1.

5. Vogt L, Pfeifer K, Banzer W. Neuromuscular control of walking with chronic low-back pain. Man Ther. 2003;8(1):21-28.

I first heard about 3D/Tri-planar stretching from the Michael Boyle Functional Strength Coach 3.0 video series around 2009. Similarly, Gary Gray completely encompasses the 3D movement paradigm in his functional training programs.  I am not entirely sure the full history behind 3D stretching,  but I will take tremendous liberty to assume it likely started with Thomas Meyer’s Anatomy Trains. This brilliantly written and illustrated work has provided us one of the most detailed reviews and perspectives of the myofascial connections of the body and their respective lines of pull in static positions and with movement. Taking it back even further, we will see that the work of Herman Kabat with the diagonal patterns of PNF also brought tremendous insight into the spiral-like function of muscular and fascial movement in the human body. In retrospect, many of us could clearly have seen in dissections and even in textbooks evidence of muscle and fascia functioning in three dimensions, but we still needed some smart thinkers to remind us that perhaps we should look at treating the movement restriction in more than one plane of motion from time-to-time.

There are numerous ways to perform 3D stretches throughout the body. Popularized systems including Yoga and Pilates have long since incorporated them and intuitively most of us can figure out a number of ways to stretch muscles in multiple planes on our own. The question is, is it better to address a movement restriction globally (3D stretch), or locally (single plane)? It is vital to note that the value of each of these stretches depends on the individual and their specific movement limitations. To be honest, I still find single plane stretches to be the most effective use of time in most cases, in particular when it comes to addressing specific restrictions. In fact, I generally limit the use of 3D stretches to the upper extremity and the hamstrings because I can often times address both a local restriction and global restrictions very effectively in these areas with a single stretch. For the purpose of this post and for this video I am only going to speak of 3D stretching through the hamstrings.

3D/Tri-planar Stretching – Hamstring Emphasized

The attachment of the biceps femoris to the sacrotuberous ligament and the fascial attachments of the erector spinae provides a fairly common restricted line of pull for most individuals. It is very easy to feel the tension throughout this chain/train and it is easy to self-manage. Plus, as I mentioned earlier, I can emphasize a local restriction by passively holding the hamstrings in a lengthened position in a sagital plane and gradually incorporate lengthening of the rest of the fascial chain as needed. From the perspective of Anatomy Trains, with the hamstrings (specifically the biceps femoris) fascial attachment to the sacrum we can take advantage of the Superficial Back Line, the Spiral Line, and the Back Functional Line to lengthen numerous fascial restrictions. From a PNF philosophy, we are lengthening through D1 and D2 hip extension  and increasing ROM into D1 & D2 hip flexion.

That’s enough writing, here is a video of me demonstrating and discussing some options for 3D/Tri-planar hamstring stretching.